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1 Introduction

In 1969, after Hofsteadter ’s first measurements of the charge distribution
in the neutron that suggested a substructure of this particle, a new series
of electron-proton scattering experiments performed at SLAC revealed that
protons were composed of smaller objects, entities named partons.

This kind of experiment can be considered as a modern version of Ruther-
ford ’s experiment, with the nucleons playing the part of of the gold atoms
and the partons being the corresponding of the atom’s core. It was suggested
that these partons were in fact quarks.

Quarks were already introduced in 1964 by Murray Gell-Man as funda-
mental objects in a model that explained the possibility to classify all hadrons
observed so far in geometrical patterns by an underlying SU(3) symmetry.
In this model, the fundamental three-dimensional representations correspond
to three (anti)quarks, each of them carrying a characteristic ’flavour’. The
observed hadrons correspond to higher dimensional irreducible representa-
tions of SU(3)f . The mesons follow a reduction of 3× 3̄ and baryons, like the
proton, form 3× 3× 3 (three quarks).

These considerations were nothing more than group theoretical specula-
tions, until in the late 1960s Bjorken and Feynman introduced the parton
model. This could explain the experimental results obtained during deep in-
elastic scattering processes of electrons from protons, where the proton is
shattered and a system with a large number of hadrons is produced, giving
at the same time a justification of the mathematical structure of the quark
model.

Bjorken and Feynman assumed the proton to be a loosely bound assem-
blage of a small number of constituent, called partons. This include quarks
(and antiquarks), which are fermions carrying electric charge, and other neu-
tral species responsible for their binding, which now we know to correspond
with gluons. By assumption, these constituents are incapable of exchanging
large momenta q2 through the strong interaction. However, the quarks have
the electromagnetic interactions of elementary fermions, so that an electron
scattering from a quark can knock it out of the proton. The time scale of the
hard scattering process is very short compared that of inter-parton interac-
tions, hence the other partons on the proton can be regarded as spectators in
the scattering process. After the collision both the proton remnant and the
struck quark hadronise into ’jets’. Figure 1 shows a graphical presentation of
an electron-proton collision in this Ansatz.

This model was then confirmed 1974 in the frame of QCD. In particular
the assumption of weak interacting partons is a feature of the asymptotic
freedom, and the hadronisation of colour confinement.
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Figure 1: Kinematics of deep inelastic electron scattering in the parton model.

However not all the predictions of this so-called ’naive parton model’
are verified. In particular following this simple model in the limit of a big
momentum exchange between the photon and the parton (Bjorken limit),
Q2 = −q2 →∞, we would expect the structure of the target to be indepen-
dent of Q2 (Bjorken scaling). As we will see, this is not the case, and the
broking of this scaling is still considered as one of the most powerful tests of
perturbative QCD.

In the following chapters I will briefly illustrate the description of the
deep inelastic scattering in the parton model. Then we will examine the
relation with QCD, and at last consider a quantitative description of the
scaling violation deriving the Altarelli-Parisi equation.

2 Deep inelastic scattering

In this section our main aim is to calculate the cross section of a deep in-
elastic lepton-proton scattering (see Fig. 2). We will then compare our result
with the one obtained considering the parton model, that is thinking of the
scattering process as happening between the lepton and a parton (see Fig. 1).

2.1 Kinematic variables

Let’s consider the scattering of a high-energy lepton off a hadron target as
shown in Figure 2. The four-momenta of the incoming and outgoing lepton
are labelled by kµ and k′µ respectively, the momentum of the proton by pµ

and the momentum transfer by qµ = kµ − k′µ. The standard deep inelastic
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Figure 2: Deep inelastic electron scattering, e + p → e + X

variables are defined as follows:

Q2 = −q2

M2 = p2

ν =
p · q
M

= E − E ′

x =
Q2

2Mν
=

Q2

2M(E − E ′)

y =
q · p
k · p = 1− E ′/E,

where the energy variables refer to the target rest frame and M is the proton
mass.

2.2 Cross section and structure functions

The square of the invariant amplitude for the inelastic scattering of an elec-
tron off a hadron shown in Figure 2 averaged over spin states is given by

∣∣M
∣∣2 =

e2

Q4
LµνW

µν , (1)

where the tensor Lµν and W µν describe the structure of the leptonic and
hadronic vertices, respectively.

2.2.1 Calculation of the leptonic tensor Lµν

The amplitude for a virtual photon to ”decay” into a e+e− pair as shown in
Figure 3 is given by the Feynman rules by

Aµ(k′, s′; k, s) = −ieū(k′, s′)γµv(k, s), (2)
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Figure 3: Amplitude for the ”decay” of a virtual photon into a e+e− pair.

where pi and si are the momenta and spins, respectively, of the outgoing
spin-1

2
-fermions. If we take the absolute value squared of this amplitude and

sum over final state spins we arrive at

Lµν(k
′; k) =

1

2

∑

s,s′
Aµ(k′, s′; k, s)A†

ν(k
′, s′; k, s)

(2)
=

1

2

∑

s,s′
e2ū(k′, s′)γµv(k, s)v†(k, s)γ†ν ū

†(k′, s′)

=
1

2

∑

s,s′
e2ū(k′, s′)γµv(k, s)v†(k, s) γ†νγ

†
0︸︷︷︸

=γ0γν

u(k′, s′)

=
1

2

∑

s,s′
e2ūa(k

′, s′)(γµ)abvb(k, s)v̄c(k, s)(γν)cdud(k
′, s′)

(∗)
=

1

2
e2 6 k′da(γµ)ab 6 kbc(γν)cd =

1

2
e2tr(6 k′γµ 6 kγν) =

1

2
e2tr(k′αγαγµk

βγβγν)

=
1

2
e2k′αkβ tr(γαγµγβγν)︸ ︷︷ ︸

=4(gαµgβν−gαβgµν+gανgβµ)

= 2e2[kµk
′
ν + kνk

′
µ − gµνk · k′],

(3)

where in (∗) we used the completeness relations

∑

s′
u(k′, s′)ū(k′, s′) = 6 k′ + me;

∑
s

v(k, s)v̄(k, s) = 6 k −me,

neglecting masses me, and the 1
2

factor arises from the initial state spin
averaging.
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2.2.2 The hadronic tensor W µν

The hadronic tensor contains all the information about the interaction of the
electromagnetic current jµ with the target proton P:

Wµν(p, q) =
∑
X

〈X |jµ(0)|P 〉 〈X |jν(0)|P 〉∗ (2π)4δ(4)(q − p− pX)

=
∑
X

〈
P

∣∣jν(0)†
∣∣ X

〉 〈X |jµ(0)|P 〉 (2π)4δ(4)(q − p− pX)

=

∫
d4z eiq·z 〈

P
∣∣jν(z)†jµ(0)

∣∣ P
〉
. (4)

In deriving this result we have used the completeness of the final state X,
i.e.

∑
X |X〉 〈X | = 1, and introduced an integral representation for the 4-

dimensional delta function.
Current conservation requires: ∂µj

µ = 0, which means

qµW
µν = 0, qνW

µν = 0. (5)

Thus W µν has the general form

W µν(p, q) = −W1(x,Q2)

(
gµν − qµqν

q2

)

+
W2(x,Q2)

M2

(
pµ − (p · q)qµ

q2

)(
pν − (p · q)qν

q2

)
, (6)

where the to functions W1 and W2 contain the information about the struc-
ture of the hadron as ’seen’ by the virtual photon. This is the most general
possibility since W µν is a tensor which respects Eqs. (5), and which is sym-
metric, depending on p, q and lorentz-invariant. These last requirements in
particular state that only p and q are allowed to carry the indices µ, ν.

2.2.3 The cross section and the structure functions

In the laboratory frame the initial and final electron 4-vectors are given by

kµ =




E
0
0
E


 , k′µ =




E ′

E ′ sin(ϑlab)
0

E ′ cos(ϑlab)


 ,

and the nucleon 4-vector is given by

pµ =




M
0
0
0


 ,
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and
p · q = Mν.

The differential cross section in the laboratory frame is obtained inserting
formula (3) and (6) into (1):

d2σ

dE ′dΩ′ =
1

16π2

E ′

E

∣∣M
∣∣2 =

e2

16π2Q4

E ′

E
LµνW

µν

=
4α2E ′2

Q4

{
W2(ν,Q

2) cos2

(
ϑlab

2

)
+ 2W1(ν,Q

2) sin2

(
ϑlab

2

)}
, (7)

which, in the Bjorken limit where the proton is moving very fast (p À M),
can be brought to the form

d2σ

dxdQ2
=

4πα2

xQ4

(
y2x · F1(x,Q2) + (1− y) · F2(x,Q2)

)
(8)

=
4πα2

Q4

[(
1 + (1− y)2

)
F1(x,Q2) +

1− y

x
(F2(x,Q2)− 2xF1(x,Q2))

]
,

(9)

where we defined the structure functions

F1(x,Q2) = W1(x, Q2)

F2(x,Q2) = νW2(x,Q2).

3 The naive parton model

We again consider Fig. 1 and want to compute the scattering cross section of
the reaction e−q → e−q. Because of crossing symmetry, the matrix element
for this scattering can be obtained from the corresponding matrix element
for e+e− → qq̄. In fact crossing symmetry requires the amplitudes for the
two processes

e−(k) + q(pq) → e−(k′) + q(p′q)

e+(k′) + e−(k) → q̄(−pq) + q(p′q)

to be equal. Here pq is the momentum carried by the parton, which can be
expressed as a fraction of the momentum of the proton: pq = ξp.

The amplitude for the reaction e+e− → qq̄ can be obtained by multiplying
the corresponding color factor wit the amplitude of e+e− → µ+µ−, which is
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a classical computation of QED. Therefore we will give here only the result
in terms of our kinetic variables :

dσ̂

dQ2
=

2πα2e2
q

Q4

(
1 + (1− y)2

)
,

where the ’ˆ’ indicates that we are considering the structure of a quark,
rather than proton, target. The mass-shell constraint for the outgoing quark,

p′2q = (pq + q)2 = q2 + 2pq · q = −2p · q · (x− ξ) = 0,

implies x = ξ. By writing
∫ 1

0
dxδ(x−ξ) = 1, we obtain the double differential

cross section for the quark scattering process:

dσ̂

dxdQ2
=

4πα2

Q4

(
1 + (1− y)2

) 1

2
e2

qδ(x− ξ). (10)

By comparing Eqs. (10) and (8) we see that the structure functions in this
simple model are:

F̂2 = xe2
qδ(x− ξ) = 2xF̂1 (11)

This represents a quark with an exact momentum fraction x = ξ.
Now we want to consider the so-called ’naive parton model’, which as-

sumes the proton to be composed of quarks with the following characteris-
tics:

• q(ξ)dξ represents the probability that a quark q carries a momentum
fraction between ξ and ξ + dξ, where 0 ≤ ξ ≤ 1,

• the virtual photon scatters incoherently off the quark constituents.

In this case the proton structure functions are obtained by weighting the
quark structure functions with the probability distribution q(ξ),

F2(x) = 2xF1(x) =
∑
q,q̄

∫ 1

0

dξ q(ξ) xe2
qδ(x− ξ)

=
∑
q,q̄

e2
q xq(x). (12)

The first identity, F2(x) = 2xF1(x), is known as the Callan-Gross relation
and is a direct consequence of the spin-1

2
nature of the quarks. The function

q(x) is known as the parton distribution function.
The second identity is the one which interests us the most: it predicts

that the cross section only depends on one variable, the scaling variable x.
This property is called Bjorken scaling. Approximate scaling is observed in
the data at x ≈ 0.1, but violation of scaling is observed for lower and higher
x. Figure 4 shows F2 versus Q2 measured by various HERA- and fixed target
experiments.
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Figure 4: The structure function F2 measured by ZEUS, H1 and various fixed
target experiments plotted against Q2. Bjorken scaling is observed at high x,
but is gradually broken towards low x. The line represents a QCD based fit
to the data.
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4 The parton model and QCD: violation of

scaling

In the ’naive’ parton model the structure functions scale, i.e. F (x,Q2) → F (x)
in the asymptotic (Bjorken) limit: Q2 →∞, x fixed. In QCD, this scaling is
broken by logarithms of Q2 (see Fig. 4). The key point is that the parton’s
transverse momentum is not restricted to be small. In fact a quark can emit
a gluon and acquire large transverse momentum kT . QCD extends the naive
quark parton model by allowing interactions between the partons via the
exchange of gluons.

In this section I will calculate the structure function of a quark which
can emit a gluon, i.e. the O(αS) correction to the parton model result
F̂2 = e2

qx δ(x− ξ) obtained in the previous section.

4.1 The QCD improved parton model

Figure 5: Virtual photon quark total cross section, γ∗q → qg

A proton cannot be calculated completely in the perturbative approach.
An essential ingredient in the QCD description of the proton is the concept of
factorization: it is assumed that the differential cross section for the photon-
proton scattering can be written as the product of a parton density and a
hard scattering process:

dσ = q(x)dx
dσ̂

dz
dz, (13)

where as before and as indicated in Figure 5:
q(x) is the probability of finding a quark with momentum pq = xp,
dσ̂(z,Q2)

dz
is the cross section for scattering with a value of z = y

x
.
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We can now integrate eq. (13) and sum over all quarks to obtain

σ(y, Q2) =
∑
q,q̄

∫ 1

y

dx q(
y

x
)σ̂(x, Q2), (14)

where the limit of integration comes from the condition that z ≤ 1.
We want to expressed Eq. (14) in terms of the corresponding structure

functions F2

F2(x,Q2) =
∑
q,q̄

∫ 1

x

dξ q(
x

ξ
)F̂2(ξ,Q

2). (15)

4.2 Contribution from one-gluon emission

Figure 6: Feynman diagrams for the calculation of the amplitudes for deep
inelastic scattering off a quark

Summing over all the real gluon emission diagrams contributing to the
deep inelastic scattering (figure 6), together with the leading-order diagram
(see the Appendix for the full derivation), give a structure function

F̂2(x,Q2) = e2
qx

[
δ(1− x) +

αs

2π

(
P (x) ln

Q2

κ2
+ C(x)

)]
. (16)

In order to obtain a proton structure function we must convolute the
quark structure function F̂2 of Eq. (17) with a ’bare’ distribution q0 of a
quark in a proton and sum over quark flavours, as we did before for the naive
parton model, and as indicated by the factorization theorem expressed with
Eq. (15). This gives

F2(x,Q2) = x
∑
q,q̄

e2
q

[
q0(x) +

αs

2π

∫ 1

x

dξ

ξ
q0(ξ)

(
P

(
x

ξ

)
ln

Q2

κ2
+ C

(
x

ξ

))
+ . . .

]
.

(17)
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Exactly as for the renormalization of the coupling constant, we can re-
gard q0(x) as an unmeasurable, bare distribution. The collinear singularities
are absorbed into this bare distribution at a ’factorization scale’ µ, which
plays a similar role to the renormalization scale. In other words, we define a
’renormalized’ distribution q(x, µ2) by

q(x, µ2) = q0(x) +
αs

2π

∫ 1

x

dξ

ξ
q0(ξ)

(
P

(
x

ξ

)
ln

Q2

κ2
+ C

(
x

ξ

))
+ . . . ,

in terms of which

F2(x,Q2) = x
∑
q,q̄

e2
q

∫ 1

x

dξ

ξ
q(ξ, µ2)

[
δ(1− x

ξ
) +

αs

2π
P

(
x

ξ

)
ln

Q2

κ2
+ . . .

]
.

(18)

Taking the ln(µ2) partial derivative of Eq. (18) we obtain

ln(µ2)
∂

∂ ln(µ2)
q(x, µ2) =

αs(µ
2)

2π

∫ 1

x

dξ

ξ
P

(
x

ξ

)
q(x, µ2).

This equation - known as the (Dokshitzer)-Gribov-Lipatov-Altarelli-Parisi
(GLAP) equation - is the analogue of the β function equation describing the
variation of αs(µ

2) with µ2 and is one of the most important equations of
perturbative QCD.

4.3 Interpretation of the violation of scaling

Figure 7: With increasing Q2 finer structure is observed

The processes that generate the parton interactions to first order in αS are
gluon radiation (q → qg), gluon splitting (g → gg) and quark pair production
(g → qq̄). The violation of Bjorken scaling observed in the data is naturally
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described by these processes: a photon interacting with a quark at a certain
Q2

0 probes the proton with a finite resolution proportional to 1/Q2
0. If the

photon probes the same quark at a higher Q2, the quark might have radiated
a gluon not visible at Q2

0 and the photon effectively interacts with a quark
carrying less momentum (figure 7). The result is a dependence of the cross
section on Q2.

The effect of all interactions is described by so called splitting functions,
in leading order Pqq(

y
x
), Pgq(

y
x
), Pgg(

y
x
) and Pqg(

y
x
) (figure 8). Each function

Pp′p(
y
x
) represents the probability that a parton of type p radiates a quark or

gluon and becomes a parton of type p′ carrying fraction y
x

of the momentum
of parton p. Splitting function have been calculated from perturbative QCD.

Figure 8: The processes related to the lowest order QCD splitting functions.
Each splitting function Pp′p(

y
x
) gives the probability that a parton of type p

converts into a parton of type p′, carrying a fraction y
x

of the momentum of
parton p.

5 Appendix: Calculation of σ(γ∗q → qg)

Figure 9: Feynman diagrams for the calculation of the amplitudes for deep
inelastic scattering off a quark
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This process has the amplitude M1 +M2 with (see Fig. 9)

M1 = iū(p′, s′)εµ(λ)(−igsγ
µT a

ij)i
6 p+ 6 q

(p + q)2
(−ieeqγ

ν)εν(λ
′)u(p, s)

M2 = iū(p′, s′)ετ(λ)(−ieeqγ
τ )i

6 p− 6 q
(p− q)2

(−igsγ
σT a

ij)εσ(λ′)u(p, s)

This gives for |M1|2:

|M1|2 =
g2

se
2e2

q

(p + q)4
T a

ijT
a
ji

∑

s,s′,λ,λ′
(ū(p′, s′)εµ(λ)γµ)(6 p+ 6 q)γνεν(λ

′)u(p, s))

(ū(p, s)ε∗ν(λ′)γν)(6 p+ 6 q)γµε∗µ(λ)u(p′, s′))

=
g2

se
2e2

q

(p + q)4
tr(T aT a)tr( 6 p′γµ( 6 p+ 6 q)γν 6 pγν( 6 p+ 6 q)γµ)

=
64g2

se
2e2

q

s2

(
2(p′p + p′q)(pq)− (p′p)(2pq + q2)

)
.

We use the Mandelstam-Variables

s = (p + q)2, t = (q − p′)2, u = (p− p′)2,

with the properties:

pp′ =
−1

2
u, pq =

1

2
(s− q2), p′q =

−1

2
(t− q2), s + t + u = q2,

and obtain

|M1|2 =
32g2

se
2e2

q

s2

(
(−u− t + q2)(s− q2) + us

)
=

32g2
se

2e2
q

s2
(s(−t− u) + us)

= 32g2
se

2e2
q

(−t

s

)
.

In analogy with this result we can calculate

|M2|2 = 32g2
se

2e2
q

(−s

t

)

and

M1M∗
2 = 64g2

se
2e2

q

(−uq2

st

)
.
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For the square of the total amplitude averaged over spins we can therefore
write
∣∣M

∣∣2 =
1

12

(|M1|2 + |M2|2 + 2M1M∗
2

)
=

128π2

3
αsαe2

q

(
− t

s
− s

t
+

2uQ2

st

)
.

With this result we can write the differential cross section for the subprocess
γ∗q → qg, which is given by

dσ̂

dt
(s, t) =

z2

16πQ4

∣∣M
∣∣2 =

πααse
2
qz

2

Q4

16

3

(
− t

s
− s

t
+

2Q2(s + t + Q2)

st

)
.

(19)

The total virtual photon quark cross section is arrived at by integrating Eq.
(19) over t. Namely,

σ̂(s) =

∫ tmin

tmax

dσ̂

dt
(s, t)dt,

where tmin = 0, and tmax = −(s + Q2) = −Q2/z.

This integral is divergent and we cannot proceed without choosing a regu-
larization scheme. Notice that the singularity arises when the gluon is emitted
parallel to the quark, and for this reason is called a collinear divergence. The
key to understanding what is happening is to realize that the limit t → 0
corresponds to a long-range (’soft’) part of the strong interaction which is
not calculable in perturbation theory.

To regularize the singularity we will change the limit of integration to

tmin = −m2
g

Q2
zQ2

1−z
, and this corresponds to giving a fictitious mass q2

g = m2
g to

the gluon (see MG Regularization Scheme). With
(

s2 + sQ2(s + Q2)

s

) ∫ −m2
gzQ2/(Q2(1−z))

−Q2/z

(
−dt

t

)
=

Q2(1 + z2)

z(1− z)
ln

(
Q2(1− z)

m2
gz

2

)
,

we obtain

σ̂(z,Q2) =
4παse

2
q

Q2
z

(
Pgq(z) ln

(
Q2

m2
g

)
+ C(z)

)
,

where we defined the splitting finction

Pgq(z) =
4

3

1 + z2

1− z
.

σ̂(z,Q2) is proportional to the structure function F2:

F̂2(z, Q
2) = e2

qz

[
αs

2π

(
P (z) ln

Q2

κ2
+ C(z)

)]
,

which is exactly the correction to the parton model result to obtain Eq. (17).
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