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Modern investigations on the role of the hippocampal system are typically being pursued along two largely
independent venues: a spatial navigation view, positing that the hippocampus is part of a complex dedicated to
localization in the environment, and a  declarative memory view, focusing on rapid encoding and retrieval of
episodic experience.
Here we investigate a theoretical proposal that tries to reconcile these apparently contrasting views: that the
hippocampus supports a semantic relational network organizing semantically related episodes in the service of
sequential planning (Eichenbaum and Cohen, 2014). In particular, we provide an algorithmic grounding to this
idea in the form of a Recurrent Neural Network (RNN) whose task is to predict future observations in partially
observable environments, based on current observations and the actions taken by an actor module. 
We tested our model by simulating an agent navigating a linear track and a squared 2d arena, and receiving only
partial observations about its location. We hypothesized that, in order to accurately predict future observations,
our RNN model had to learn to generate recurrent states that usefully summarize the history of its inputs , which,
in a Markovian navigation task, would correspond to representing the current location. Indeed,  our predictive
training  procedure  leads  to  recurrent  activations  that  are  reminiscent  of  the  well-known  hippocampal
physiological observations of place cells, border cells, and head-direction cells. Moreover, we show that these
learned representations provide good generalization performance in reinforcement learning navigation tasks in
partially observable environments.
Our model  supports the unifying view that  both,  place-related activity observed in the hippocampus during
spatial navigation, as well as its involvement in episodic memory formation, could be a consequence of its role
as a semantic relational network (Eichenbaum and Cohen, 2014), specifically via the computational mechanism
of a recurrent system trained with predictive coding.

Methods. 
Inspired  by  recent  computational  work  that  combines  models  of  episodic  memory formation  (Howard  and
Kahana, 2012) and reinforcement learning (Dayan, 1993), we set up a RNN with the architecture depicted in Fig.
A trained to predict future observations as described below. In addition to what’s apparent from the figure, the
RNN is structurally constrained, so as to simultaneously favor the learning of long term temporal dependencies
(Mikolov et al. 2014) and to match the direct/indirect pathway anatomy of the hippocampus. At a given time t
the RNN receives as input an observation vector o(t) and an action vector a(t). The output ô(t) of the network is
trained to reproduce the observation vector at time t+1,  o(t+1), by minimizing a quadratic cost function over the

length  T of  an episode, Cost =  
1
T
∑
t=1

T

( ô (t )− o (t+1 ) )2 ,  via the Back Propagation Through Time (BPTT)

algorithm (Williams 1990).  The cost function is such that, once training has converged (Fig. B), the network
predicts future observations given the current observation and next action.
We simulated a linear track (a linear grid maze of length 80) through which the agent runs at constant speed,
only switching direction at the edges. The agent also receives observations (random vectors spatially smoothed
with a Gaussian kernel of size 2-steps) only for the first 5 and last 5 positions of the maze. We reasoned that the
lack of external input in the central part of the track would be crucial to prompt the agent to form useful internal
representations to correctly predict the observations at the edge of the run. In fact, the agent learns to predict
future observations, and does so by building internal representations that are informative of its current location in
the track.  We demonstrate this by analyzing the activations of the recurrent  units  of  the RNN for different
locations, and showing in Fig. C that different units have a preference for different locations in space. Moreover,
this spatial tuning (the specificity of the preference) increases during learning (Fig. D), and is directional, i.e.
place selectivity depends on the direction of movement of the agent (Fig. C), consistently with what has been
reported for place cells recorded in rodents in linear track experiments.
Next we summarize the results  of  the 2d environment simulation.  The input  to the network in this case is
distance information from the wall in front of the agent, simulating somatosensory input (Sofroniew et al. 2015),
as well as distal visual information in terms of the “color” of the wall in front of the agent. In Fig. E. we show
the activation of all  the 100 units in the RNN (one per panel) sorted and averaged according to the agent’s



location. Several units appear to be clearly place selective. These representations have interesting dependencies
on the specific details of the action selection policy (which in this case is random memoryless exploration) and
on the statistics of the observed inputs that we plan to further characterize in the future.

A. Network architecture. The network has a structurally-constrained recurrent layer that receives as input at each time t the action vector
a(t) and the observations vector o(t). The network is trained such that its output ô(t) predicts the observation o(t+1) in the next time step
t+1.  B.  Learning  curve:  the  cost  function  (the  error  in  predicting  the  next  observations)  decreases  as  the  learning  progresses.  C.
Representation of space in the model trained on the linear maze. Left panel: The average activity of units in the recurrent layer sorted
according to the position of their preferred location during runs in their positive direction (the direction for which they’re the most active).
Right panel: the activity of the same units sorted in the same way, during a run in their negative direction. D. Spatial tuning increases as a
function of training. The three panels correspond to three different epochs during training. For each epoch we plot the average correlation
between representations recorded at  locations at  different spatial  distance.  E.  Average activations of all  units in the network for the
exploration of the agent in a 2d square maze. Each panel represent the average activity of one unit in all the positions of the maze.
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