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Brain processes arise from the interaction of a vast number of elements. Despite the enormous
number of participating elements, interactions are generally limited by physical constraints.
Typically a neuron is connected to thousands other neurons, a far lower number than the
hundred billion neurons in the brain. Unfortunately, it is the number of connections per neuron,
not the total number of neurons, what often determines the performance of large neural networks
(measured, e.g., as memory capacity), a fact that hinders the scalability of such systems.

We hypothesize that the scalability problem can be circumvented by using multimodular
architectures, in which individual modules composed of local, densely connected recurrent
networks interact with one another through sparse connections. We propose a general model of
multimodular attractor neural networks in which each module state changes only upon external
event and the change depends on the state of a few other modules. To implement this scheme,
every module has to disregard the state of any module not involved in a particular interaction.
Because a module can potentially interact with several others, ignoring the states of non-relevant
modules would require learning of an exponentially large number of conditions.

We solve this problem by adding a group of neurons that dynamically gate the interactions
between modules. These neurons receive inputs from the modules and event signals through
random sparse connections, and respond to combinations of event-states. This information
is then sent back to the modules. Because they implement conjunctive representations, the
number of necessary gating neurons grows only polynomially with the number of modules.
We hypothesize that gating neurons reside in cortical layer 2/3, and that they mediate the
interactions between modules in layer 5/6. The laminar organization of the neocortex could
thus be a crucial architectural solution to the scalability problem.

Additional information

Imagine that we have M identical modules and that each module communicates to other K < M
modules, which we call the ‘neighbors’ Each module can be in one of S possible states, encoded
as stable patterns of activity. Changes in the configuration of the multimodular system are
triggered by ‘events’, delivered as global external signals to all the modules. Let’s denote the
set of possible states by S = {s1,...,sg}, and the set of possible events by & = {e1,...,eg}.
Our goal is to implement an arbitrary map 7' : € x S x S& — S that specifies how the
state of a module should transform upon the appearance of a particular event, given some
particular configuration of neighbors. The number of combinations of state, events, and neighbor
configurations is SX+1E, which is potentially huge.

Because the number of constraints that can be simultaneously imposed scales linearly with
the number of afferent connections (see, e.g., [1, 3]), there is no hope we can implement all
the above rules in a system with limited connectivity. In realistic situations, however, each
module needs to interact with only a few f < K other modules at a time. And only a few states
Set < S of these other modules may actually induce transitions. In these cases, the number of
relevant combinations of state, events, and neighbor configurations is reduced to S/f'. This
number can easily drop to, or fall below, the number of afferent connections.



We propose a multimodular architecture that can implement such generic rule tables. The
architecture incorporates a population of randomly connected neurons (RCNs), which are
naturally selective to conjunctions of states and events [2]. With such mixed selectivity, these
neurons can represent efficiently the rules to implement, and can route (i.e., dynamically gate)
the interactions between modules. We show that the minimal number of RCNs necessary to
implement random rule tables (with a given S, M, K, and f) depends polynomially on the
number of modules, and is essentially dictated by the descriptive complexity of the rule table.
Remarkably, the number of RCNs needed to implement a particular set of rules is only a few
times bigger than the number of cells we would need in a carefully designed circuit [2].
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Basic wiring diagram of a multimodular network
with gated interactions The state of each module M;
is encoded by a population of recurrently connected neu-
rons (‘state’ neurons). All state neurons receive inputs
signaling external events (‘event’) as well as inputs from
a population of gating neurons (‘gate’). Importantly,
the interaction between modules is not brought about
by direct connections between ‘state’ neurons, but it is
mediated by gating neurons. These are randomly inner-
vated by state neurons from multiple modules, as well
as by external neurons (green arrows: random sparse
connections). Gating neurons transform nonlinearly this

combination of inputs into firing rates, and this activity is fed back to the modules through
plastic connections (shown as red arrows). These plastic connections can be trained off-line to
drive all the set transitions described in a rule table.
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Number of implementable mental states (or rules)
as a function of the number of RCNs. Each module
is connected to K = 4 neighbors. The parameter f,; is
the number of modules each RCN receives inputs from.
Each data point represents to the average number of RCNs
needed to implement a sample of transition tables with
a fixed S and f. The ordinate corresponds to the total
number of entries that are compatible with the rules.
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