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How do we tell whether a neural representation is good or bad? The answer depends on the input statistics, 

the task at hand and the readout. Previous work, mainly in early sensory areas, focused on the amount of 

information about a stimulus contained in the neural representation. Here we took a different perspective and 

evaluated a neural representation by considering the dynamics of a generic cortical circuit. This approach led 

us to test the classification performance of a linear readout from a population of input neurons that encode a 

few different noisy sources of information. Our analysis revealed that input neurons have to respond to 

mixtures of the information sources in order to enable classification. One efficient way to achieve these 

response properties is to mix different sources of information with randomly connected neurons (RCNs).  

Under the assumption that the output neuron reads out the RCNs, we derived a formula for the classification 

performance of noisy inputs (generalization error). The performance depends on the “discrimination factor”, 

expressing how much the population activity changes when only one of the information sources is altered; 

and on the “generalization factor”, expressing the change when none of the sources are altered, but different 

noisy versions are presented. Specifically we explored the effect of the population coding level on the 

tradeoff between these factors, and show that a coding level of about 0.1 is optimal for many different cases. 

The advantage of optimal coding is greater for higher levels of noise in the inputs. Our results provide a 

possible explanation for the abundance of mixed selectivity found in neural recordings, and for the coding 

level observed in many areas. Furthermore, we provide a prescription to measure components of the 

generalization-discrimination tradeoff from neural data. 
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Additional information 

The theoretical framework we use is an extension of [1] to multiple sources of information, each represented 

by a population of binary neurons. Each information source can take one of several states. A second layer of 

Randomly Connected Neurons (RCNs) receives fixed random connections from all sources, and each neuron 

is active if its input passes a given threshold θ  (this determines the coding level which is the fraction of 

stimuli eliciting a response in a given RCN). A Perceptron is trained to classify randomly different 

combinations of noisy realizations of the information sources. 

The two main results are: 

1) When trying to integrate two sources of information, one 

having m possible states and the other having n possible states, 

we face a classification problem of mn patterns in m+n 

dimensions. In general this will not be linearly separable, and 

hence the need for mixing the sources of information in a non-

linear way. The problem is even more severe for more than two 

sources of information. 

2) When presenting p=mn noisy patterns, with a probability q of 

flipping any bit in the input, the test error can be approximated 

by 
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. γ  measures the non linearity 

of the input to RCN transformation, can be measured from 

data, and generally increases with coding level. 2σ  measures 

the variability in RCN space that affects classification, is 

roughly equal to the inter trial variability, is very weakly 

dependent on p, and increases with coding level. 
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dynamics: the importance of the diversity of neural responses,” Frontiers in Computational Neuroscience, 

vol. 4, 2010. 
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Dependence of test error for 

different noise levels q. Note that 

the steepness increases with the 

noise, and the optimal coding level 

slightly decreases. 

 


