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The perceptron is a simple supervised algorithm to train a linear classifier
that has been analyzed and used extensively. The classifier separates the
data into two groups using a decision hyperplane, with the margin be-
tween the data and the hyperplane determining the classifier’s ability to
generalize and its robustness to input noise. Exact results for the maximal
size of the separating margin are known for specific input distributions,
and bounds exist for arbitrary distributions, but both rely on lengthy
statistical mechanics calculations carried out in the limit of infinite input
size. Here we present a short analysis of perceptron classification using
singular value decomposition. We provide a simple derivation of a lower
bound on the margin and an explicit formula for the perceptron weights
that converges to the optimal result for large separating margins.

1 Introduction

The perceptron is a simple algorithm for training a linear classifier to sep-
arate a data set into two distinct classes (Rosenblatt, 1962). It works by
iteratively updating a weight vector to define a decision hyperplane that
separates the inputs into the two desired classes (Minsky & Papert, 1969).
In addition to its simplicity, the perceptron algorithm has the appealing
property of converging after a finite number of iterations if the data set is
linearly separable (Novikoff, 1962).

More recent modifications of the original perceptron have led to algo-
rithms that are guaranteed to converge to an optimal solution—one corre-
sponding to a decision hyperplane that maximally separates the two data
classes. This is obtained by maximizing the separating margin, defined as
the distance between the input classes and the decision hyperplane (Krauth
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& Mézard, 1987; Freund & Schapire, 1999; Korzen & Klesk, 2008; Abbott &
Kepler, 1989a). This strategy increases the classifier’s robustness to input
noise and its ability to generalize to untrained data.

In her seminal work, Gardner (1988) proved an exact relation between
the number of patterns the perceptron has to classify and the maximal
margin attainable. This result, however, holds only in the thermodynamical
limit (where the number of neurons and input patterns goes to infinity)
and for independent and identically distributed inputs. Bounds on the
margin were later obtained by Tarkowski, Komarnicki, and Lewenstein
(1991) and Tarkowski and Lewenstein (1992) for a general distribution of
inputs through a replica method analysis (Mézard, Parisi, & Virasoro, 1987).

Our main result is an independent derivation of the bound obtained by
Tarkowski et al. (1991) and Tarkowski and Lewenstein (1992) using ele-
mentary linear algebra methods, including singular value decomposition.
Specifically, we show that the margin is bounded by the minimal singu-
lar value of the matrix whose columns are the input patterns. This result
is valid for any set of input patterns and does not assume any particular
correlation structure. Our analysis also provides a straightforward deriva-
tion of the pseudo-inverse solution to the perceptron (Personnaz, Guyon, &
Dreyfus, 1985; Kanter & Sompolinsky, 1987), which provides a closed-form
expression for the weights of the perceptron that converges to the optimal
solution for large values of the separating margin.

The perceptron has been used as a tool in a variety of fields ranging from
machine learning (Freund & Schapire, 1999), through modeling of specific
brain regions (Brunel, Hakim, Isope, Nadal, & Barbour, 2004) to training
methods for spiking and decision-making neural networks (Brader, Senn,
& Fusi, 2007; Rigotti et al., 2010). A simple way of analyzing the perceptron
can provide valuable insight into all these fields.

2 Framework

We consider a perceptron with N binary inputs and a single output. The
perceptron has to separate p patterns ξ

μ

i = ±1 into two classes ζμ = ±1,
where i = 1, . . . , N and μ = 1, . . . , p. The ratio between the number of
patterns and the number of inputs defines the storage capacity α = p/N.
The output of the perceptron is determined by its weights wi and, for a given
pattern ξμ, is defined as oμ = sign

(∑
i wiξ

μ

i

)
. Therefore, the conditions for

correct classification are

hμ = ζμ

N∑
i

wiξ
μ

i ≥ κ, μ = 1, . . . , p (2.1)

with κ > 0.
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To ensure robustness to input noise and allow generalization, it is useful
to maximize κ , with the constraint that the vector of weights wi lies on the
unit sphere (see Gardner, 1988). A solution to the full problem is therefore
a weight vector w satisfying the conditions

N∑
i

w2
i = 1

(2.2)
hμ ≥ κ,

for all μ and for a given κ > 0. The optimal solution maximizes κ .
To simplify the presentation of the analysis, we use matrix notation. We

define an N × p matrix S with components Siμ = ζμξ
μ

i . Equations 2.1 and
2.2 then read:

hμ ≥ κ

hT = wT S (2.3)

wT w = 1,

for all μ and a given κ > 0, and where wT and hT denote the row vectors
obtained by transposing w and h.

We now factorize the input matrix using singular value decomposition
(SVD),

S = U�VT , (2.4)

where (defining r as the rank of S) U is an N × r matrix with orthonormal
columns (UTU = I ), � is an r × r diagonal matrix with positive real num-
bers on the diagonal (the singular values of S) and V is a p × r matrix with
orthonormal columns (VT V = I ).

The SVD decomposition of the input matrix S suggests an equivalent
perceptron problem obtained by absorbing the matrix U into the weight
vector w. The original and equivalent formulations are:

� For κ > 0, find w with wT w = 1, so that hμ ≥ κ, for all μ, where
hT = wT (U�VT ), (P1)

� For κ̃ > 0, find w̃ with w̃T w̃ = 1, so that h̃μ ≥ κ̃, for all μ, where
h̃T = w̃T (�VT ). (P2)

The first formulation P1 is a restatement of the original problem. We
will show that the second form P2 is equivalent to the original formu-
lation, in that there exists a transformation from the optimal solution
to P2 to the optimal solution to P1, and vice versa. Working with the
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formulation P2 will allow us to derive a lower bound on κ̃ and, in turn,
on κ .

3 Equivalence of P1 and P2: Uncovering the True Dimensionality
of the Problem

We now show that if a weight vector w̃ is the optimal solution of P2,
then w = Uw̃ is the optimal solution of P1. This is equivalent to saying
that if w̃ satisfies P2 with κ̃ , then w satisfies P1 with κ = κ̃ . The state-
ment follows from the definitions P1 and P2 and from the normalization
of w:

wT w = w̃TUTUw̃ = 1.

Now we prove by contradiction that w = Uw̃ is actually the optimal
solution to P1 if w̃ is the optimal solution to P2. Suppose there exists a
better solution than w to P1, that is, there is a normalized weight vector q
that satisfies

min(qT S) = κ ′ > κ = min(wT S).

If we now define the normalized r -dimensional vector q̃ = UT q/(qTUUT q)
as a candidate P2 solution, we can see that it satisfies

min
(̃
qT�VT) = min

(
qTU�VT

)
∥∥UT q

∥∥2 = κ ′∥∥UT q
∥∥2 ≥ κ ′ > κ = κ̃,

contradicting the optimality of w̃. The inequality ‖UT q‖2 ≤ ‖q‖2 stems from
the fact that U is a projection on an r -dimensional vector space.

Notice that in general, the matrix �VT of the perceptron problem, P2, is
an r × p matrix, where r is the rank of S. P1 and P2 are therefore equivalent
to an r -dimensional perceptron classifying p patterns. In particular, the
reformulation, P2, uncovers the true dimensionality of the classification
problem at hand.

4 Dual Formulation and Lower Bound on κ

Assuming that a solution to P2 exists for some κ̃ > 0, we now reformulate
the task of finding the optimal solution to the perceptron problem—the max-
imal κ̃ for which P2 holds. Defining h̄ = h̃/̃κ and w̄ = w̃/̃κ and substituting
these definitions in the equivalent equation, P2, allows us to reformulate
the search for the optimal solution as the problem of finding a weight vector
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w̄ satisfying

w̄T w̄ = 1
κ̃2 subject to h̄ ≥ 1, where h̄T = w̄T�VT ,

for the largest possible κ̃ > 0, where the notation h̄ ≥ 1 stands for
minμ

(
h̄μ

) ≥ 1. Because maximizing κ̃ > 0 is the same as minimizing 1/̃κ2,
our task can be formulated in the following equivalent dual form: instead
of maximizing minμ

(
h̄μ

)
subject to a constraining equality on w̄2, we min-

imize w̄2 subject to inequality constraints on h̄μ:

w∗ = arg min
w̄

(
w̄T w̄

)
subject to h̄ ≥ 1, where h̄T = w̄T�VT .

The maximal margin κ∗ will then be given by

1/κ∗2 = w∗T w∗ = min
w̄

(
w̄T w̄

) = min
w̄

(
h̄T Mh̄

)
(4.1)

subject to h̄ ≥ 1, where h̄T = w̄T�VT ,

and we define a p × p matrix M = V�−2VT .
We now consider the special case r = p (which implies that there are p ≤

N linearly independent patterns). In this case, the formula w̄ = �−1VT h̄
defines a one-to-one relationship between h̄ and w̄. Thus, we can switch
the minimization parameter from w̄ to h̄:

1/κ∗2 = min
h̄: h̄≥1

h̄T Mh̄. (4.2)

This expression is equivalent to equation 24 in Tarkowski et al. (1991). We
now use this result to obtain a lower bound on the maximal margin κ∗.
Specifically, observe that the all-ones vector 1T = (1, 1, ..., 1) satisfies the
condition h̄μ ≥ 1. Using this fact in equation 4.2, we get

1/κ∗2 = min
h̄: h̄≥1

h̄T Mh̄ ≤ 1T M1 ≤ p λmax(M),

where λmax(M) is the maximal eigenvalue of M. Notice that the first in-
equality in the previous expression is saturated in the case where the vector
1 is a minimum of the quadratic form h̄T Mh̄, while the second inequality is
saturated when this vector is an eigenvector associated with the maximal
eigenvalue.
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Since the eigenvalues of M are the inverse-squared singular values of S,
the maximal margin of the perceptron is bounded from below by

κ∗ ≥ σmin√
p

, (4.3)

where σmin is the minimal singular value of S.
The simple derivation of equation 4.3, which appears as equation 12

in Tarkowski and Lewenstein (1992), is the main result of our note. This
derivation was made possible by the formulation P2, which factorizes out
the matrix U and allows a one-to-one mapping between the weights w̄ and
the stabilities h̄. The bound is useful in cases where exact results for the
maximal margin are not known.

We also note that for a general S, we cannot improve the bound by pro-
viding a simple example where the bound is tight. Consider the following
two patterns in a two-dimensional space:

ξ 1 =
(

1
1

)
, ξ 2 =

(
1

−1

)
, ζ T = (

1 −1
)
. (4.4)

In this case the relevant matrices are

S =
(

1 −1
1 1

)
=

(−1/
√

2 −1/
√

2
−1/

√
2 1/

√
2

) (√
2 0

0
√

2

) (−1 0
0 1

)
.

(4.5)

The optimal separating hyperplane for these patterns is the ξ2 = 0 line, and
thus the maximal margin is 1. Since σmin = √

2, the bound 4.3 is tight.

5 A Closed-Form Solution for the Weight Vector

Using the candidate vector h̄ = 1 not only provides us with a bound on
the perceptron margin, but can also provide a closed-form solution for the
N-dimensional weight vector of P1. Using the relationships w̄ = �−1VT h̄
and w = Uw̃ in the r = p case defines a weight vector,

wi = z
∑
μ, j

Uiμ

σμ

Vjμ, (5.1)

where z is a normalizing factor enforcing
∑

w2
i = 1. The weight vector w

given by equation 5.1 can also be derived by solving for w in equation
2.3 by applying the pseudo-inverse of S to the vector h = κ1. The result
w = κS

(
ST S

)−1 1 simplifies using equation 2.4 to equation 5.1 with z = κ .
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This pseudo-inverse solution (Personnaz et al., 1985; Kanter & Sompolinsky,
1987) is not the optimal solution to P1, but converges to it as κ → ∞. This is
because for the optimal w, the fraction of patterns having a margin strictly
larger than κ is

∫ −κ

−∞ Dz, where Dz denotes a gaussian integral (Abbott
& Kepler, 1989b), meaning that as κ tends to infinity, the pseudo-inverse
solution, equation 5.1, will tend to the optimal solution w∗. Notice that
because the error function

∫ −κ

−∞ Dz goes exponentially to zero, the pseudo-
inverse solution starts approaching the optimal solution for margins κ of
order 1. For instance, for κ = 1.40, less than 5% of the elements of h are
above κ , meaning that h ≈ κ1 is already a good approximation.

6 Discussion

We have demonstrated the utility of applying singular value decomposition
to the perceptron problem for a quick and simple derivation of several
results.

The original problem has N unknowns. However, the patterns actually lie
in an r -dimensional subspace spanned by the columns of U, and thus there
are only r independent degrees of freedom. The formulation P2 uncovers
the true dimensionality of the problem by absorbing U in the weight vectors.
Another way to look at this result is by noting that the best weight vector
w should be a linear combination of the input patterns (Gerl & Krey, 1994).
Indeed, the transformation w = Uw̃ defines a one-to-one relation between
the r -dimensional vectors w̃ and the N-dimensional vectors w in the r -
dimensional subspace spanned by the patterns. Adding a component to
w that is orthogonal to all patterns will increase the norm of w without
contributing to the classification of the input patterns.

We can characterize the dependence of the weight vector on the in-
put patterns by implicitly defining the vector of pattern contributions x as
w̄ = Sx. The components xμ are known as the embedding strengths of the
patterns and were used to relate the perceptron problem to nonlinear op-
timization (Anlauf & Biehl, 1989). In particular, for the optimal solution to
the perceptron, we have that a given pattern is either exactly on the margin
and explicitly encoded by the weights, or it is further away from the mar-
gin and is automatically classified without being encoded in the weights.
We can easily derive these conditions within our formalism by relating
x and h̄. Specifically, inserting the definitions of x and M into equation
2.3 implies x = Mh̄. We now note that if we perturb the optimal solu-
tion h̄ to equation 4.2 by a vector δh, the result is

(
h̄ + δh

)T M
(
h̄ + δh

) =
h̄T Mh̄ + 2δhT x + O(δh2). To ensure the optimality of h̄ in the domain{
h̄ : h̄ ≥ 1

}
, for each μ there are two options: either h̄μ = 1 and then δhμ > 0,

which forces xμ > 0, or h̄μ > 1 and then δhμ can be either positive or nega-
tive, which forces xμ = 0. These conditions are known as the Kuhn-Tucker
conditions (Fletcher, 1988; Gerl & Krey, 1994).



1942 O. Barak and M. Rigotti

Our main result is a simple derivation of a lower bound on the stability
margin. This bound becomes tighter as the margin κ increases (Abbott &
Kepler, 1989b) and is therefore useful in situations where a large margin is
desirable, for instance, in cases where we are interested in increasing the
size of the basin of attraction of the fixed points of autoassociative neural
networks (Krauth & Mézard, 1987; Forrest, 1988; Gardner & Derrida, 1988;
Kepler & Abbott, 1988).

Our analysis up to and including equation 4.1 did not depend on the
assumption r = p and is valid also for the cases where p > N (which implies
r < p). The derivation of equations 4.3 and 5.1, however, does depend on
this assumption. In general, solutions to the perceptron may also exist
for the case r < p. Specifically, in the uncorrelated input case, there exists
a solution for N < 2p even though the rank is full only for N ≤ p. Our
methods, however, cannot provide any general results on this regime since
there is no one-to-one correspondence between h̄ and w̄. Analysis of this
regime has to rely on tools from statistical mechanics such as the replica and
cavity methods (Gardner, 1988; Gerl & Krey, 1994; Tarkowski et al., 1991).
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